Cathode-supported hybrid direct carbon fuel cells - DTU Orbit (02/01/2019)

Cathode-supported hybrid direct carbon fuel cells

The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work investigates cathode-supported cells as an alternative configuration for HDCFC, with better catalytic activity and performance. This study aims to define the best processing route to manufacture highly efficient cathode-supported cells based on La0.75Sr0.25MnO3/ytria-stabilized zirconia infiltrated backbones. The challenges on the development of high-performance backbones are discussed. In this study, cathode-supported configuration was confirmed to be more efficient for the oxidation of carbon than anode supported configuration. The maximum power density of the cathode-supported cell increased almost by a factor of two when compared with the anode-supported cell.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Ceramic Engineering & Science, Fundamental Electrochemistry
Contributors: Gil, V., Gurauskis, J., Deleebeeck, L., Stamate, E., Kammer Hansen, K.
Pages: 4311-4319
Publication date: 2017
Peer-reviewed: Yes

Publication information

Volume: 42
Issue number: 7
ISSN (Print): 0360-3199

Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.267
Web of Science (2017): Impact factor 4.229
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.74 SJR 1.145 SNIP 1.315
Web of Science (2016): Impact factor 3.582
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.46 SJR 1.27 SNIP 1.314
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.54 SJR 1.207 SNIP 1.484
Web of Science (2014): Impact factor 3.313
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.38 SJR 1.265 SNIP 1.449
Web of Science (2013): Impact factor 2.93
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.96 SJR 1.499 SNIP 1.708
Web of Science (2012): Impact factor 3.548
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.42 SJR 1.443 SNIP 1.828
Web of Science (2011): Impact factor 4.054