Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

Publication: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morphologies of the as-prepared catalysts were characterized by various techniques, including XRD analysis, N2 physisorption, vibrating sample magnetometry, thermal gravimetry analysis, X-ray fluorescence spectroscopy, NH3/CO2 temperature-programmed desorption, SEM, and TEM. The Al7Zr3@Fe3O4(1/1) catalyst with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed Al7Zr3@Fe3O4(1/1) to function as a heterogeneous catalyst that could be reused for at least five consecutive reaction runs without significant loss of catalytic activity after simple recovery by an external magnet. Notably, the catalyst proved also efficient for hydrogenation of other biomass-derived furanic aldehydes.
Original languageEnglish
JournalChemcatchem
Volume10
Issue number2
Number of pages10
ISSN1867-3880
DOIs
StatePublished - 2017
CitationsWeb of Science® Times Cited: 0

    Keywords

  • Aldehydes, Alcohols, Biomass, Hydrogenation, Magnetic propertie
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 142126268