Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures - DTU Orbit (19/11/2018)

Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors, Technical University of Denmark
Pages: 77-81
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Power Sources
Volume: 375
ISSN (Print): 0378-7753
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7 SJR 2.202 SNIP 1.536
Web of Science (2017): Impact factor 6.945
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.22 SJR 1.944 SNIP 1.5
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 6.34 SJR 1.9 SNIP 1.667
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.3 SJR 1.964 SNIP 2.042
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.63 SJR 1.975 SNIP 2.137
Web of Science (2013): Impact factor 5.211
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.04 SJR 2.282 SNIP 2.006
Web of Science (2012): Impact factor 4.675
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.13 SJR 2.227 SNIP 2.172
Web of Science (2011): Impact factor 4.951
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.294 SNIP 1.972
Web of Science (2010): Impact factor 4.29
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.105 SNIP 1.785
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.96 SNIP 1.713
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.587 SNIP 1.488
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.802 SNIP 2.223
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.656 SNIP 1.809
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.85 SNIP 1.805
Scopus rating (2003): SJR 1.66 SNIP 1.57
Scopus rating (2002): SJR 2.385 SNIP 1.409
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.146 SNIP 1.506
Scopus rating (2000): SJR 0.649 SNIP 0.949
Scopus rating (1999): SJR 0.814 SNIP 0.988
Original language: English
Keywords: Oxygen reduction, Catalyst, Half cell, High-temperature, Phosphoric acid
DOIs:
10.1016/j.jpowsour.2017.11.054
Source: FindIt
Source-ID: 2393660755
Research output: Research - peer-review > Journal article – Annual report year: 2018