CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9

Publication: Research - peer-reviewJournal article – Annual report year: 2018

Documents

DOI

View graph of relations

Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98–99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.
Original languageEnglish
JournalMetabolic Engineering
Volume48
Pages (from-to)288-296
ISSN1096-7176
DOIs
StatePublished - 2018

Bibliographical note

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/

CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 150572628