Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice - DTU Orbit (17/01/2019)

Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice

Exposure to high aspect ratio nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) may be associated with increased risk of atherosclerosis, pulmonary disease, and cancer. In the present study, we investigated the cardiovascular and pulmonary health effects of 10 weeks of repeated oral or pulmonary exposures to MWCNTs (4 or 40μg each week) in Apolipoprotein E-deficient (ApoE-/-) mice fed a Western-type diet. Intratracheal instillation of MWCNTs was associated with oxidative damage to DNA in lung tissue and elevated levels of lipid peroxidation products in plasma, whereas the exposure only caused a modest pulmonary inflammation in terms of increased numbers of lymphocytes in bronchoalveolar lavage fluid. Ultrasound imaging in live animals revealed an increase in the inner and outer wall thickness of the aortic arch at 10 weeks after pulmonary exposure to MWCNTs, which may suggest artery remodelling. However, we did not find accelerated plaque progression in the aorta or the brachiocephalic artery by histopathology. Furthermore, repeated oral exposure to MWCNTs did not cause changes in the composition of gut microbiota of exposed mice. Collectively, this study indicates that repeated pulmonary exposure to MWCNTs was associated with oxidative stress, whereas cardiovascular effects encompassed remodelling of the aorta wall.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, National Research Centre for the Working Environment, University of Copenhagen, University of Edinburgh
Number of pages: 44
Pages: 29–40
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Toxicology
Volume: 371
ISSN (Print): 0300-483X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.39 SJR 1.1 SNIP 0.978
Web of Science (2017): Impact factor 3.265
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.91 SJR 1.468 SNIP 1.198
Web of Science (2016): Impact factor 3.582
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.7 SJR 1.345 SNIP 1.262
Web of Science (2015): Impact factor 3.817
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.39 SJR 1.23 SNIP 1.256
Web of Science (2014): Impact factor 3.621
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.9 SJR 1.239 SNIP 1.443
Web of Science (2013): Impact factor 3.745
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.79 SJR 1.303 SNIP 1.361
Web of Science (2012): Impact factor 4.017
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes