We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035°C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide channels, which are aligned with the intersections of the (100) surface of the wafer and the (110) planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission electron microscopy of focused ion beam fabricated lammelas and trenches in the structure to elucidate the process of their formation.

General information

State: Published
Organisations: Department of Micro- and Nanotechnology, Nanointegration
Contributors: Pizzocchero, F., Bøggild, P., Booth, T.
Pages: 114303
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Journal of Applied Physics
Volume: 114
Issue number: 11
ISSN (Print): 0021-8979
Ratings:
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 2.03 SJR 0.739 SNIP 0.953
 - Web of Science (2017): Impact factor 2.176
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 1.72 SJR 0.906 SNIP 0.977
 - Web of Science (2016): Impact factor 2.068
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 1.57 SJR 0.821 SNIP 0.996
 - Web of Science (2015): Impact factor 2.101
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 2.04 SJR 1.039 SNIP 1.197
 - Web of Science (2014): Impact factor 2.183
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 2.24 SJR 1.155 SNIP 1.286
 - Web of Science (2013): Impact factor 2.185
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 2.13 SJR 1.312 SNIP 1.291
 - Web of Science (2012): Impact factor 2.21
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): CiteScore 2.24 SJR 1.374 SNIP 1.3
 - Web of Science (2011): Impact factor 2.168
 - ISI indexed (2011): ISI indexed yes