Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

Publication: Research - peer-reviewJournal article – Annual report year: 2017

DOI

View graph of relations

Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute quantities of defects can dramatically influence the solar cell, performance of DArP polymers offers critical insight alongside other structural and optoelectronic comparisons. Even via traditional methods, carbazole-based donors are frequently prone to homocoupling defects, which has been shown to - along with β-defects - compromise performance. Through defect minimization with the bulky and affordable neodecanoic acid (NDA) mixture, we report the synthesis of DArP poly[(9-(heptadecan-9-yl)-9H-carbazole)-alt-(4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PCDTBT) that outperforms Suzuki PCDTBT with similar molecular weights. Expanding beyond this model system, carbazole-based polymers featuring 2,5-diethylhexyl-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP), 4,10-bis(diethylhexyl)-thieno[2′,3′:5,6]pyrido[3,4-g]thieno[3,2-c]isoquinoline-5,11-dione (TPTI), 5-octyl-1,3-di(thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (DT-TPD), and 2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)pyridine (EDOT-Pyr) are generated. Polymers are characterized by 1H NMR, cyclic voltammetry, UV-Vis, GIXRD, SCLC hole mobilities, and are implemented into polymer solar cells fabricated in air under ambient humidity. We demonstrate that DArP polymers perform comparably to Suzuki in practical applications.
Original languageEnglish
JournalPolymer Chemistry
Volume8
Issue number30
Pages (from-to)4393-4402
ISSN1759-9954
DOIs
StatePublished - 2017
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 134704844