Capillary thinning of polymeric filaments - DTU Orbit (22/12/2018)

Capillary thinning of polymeric filaments
The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, the bottom plate is lowered under gravity to produce a specified strain. The sample is thereby stretched into a filament. Provided the filament is sufficiently long, surface tension will induce a thinning of the filament until breakup in finite time. The numerical simulations are performed with a Lagrangian finite element method and show good agreement with the experiments. A comparison of the results with existing theory in the literature reveals differences between the theoretical predictions and the real behavior, both for Newtonian and viscoelastic fluids. The origin to the divergence is analyzed and quantified. (C) 1999 The Society of Rheology. [S0148-6055(99)00103-0].

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre
Contributors: Kolte, M. I., Szabo, P.
Pages: 609-625
Publication date: 1999
Peer-reviewed: Yes

Publication information
Journal: Journal of Rheology
Volume: 43
Issue number: 3
ISSN (Print): 0148-6055
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.17 SJR 1.326 SNIP 1.564
Web of Science (2017): Impact factor 2.969
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.1 SJR 1.438 SNIP 1.523
Web of Science (2016): Impact factor 3.136
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.67 SJR 1.43 SNIP 1.531
Web of Science (2015): Impact factor 2.916
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.29 SJR 1.696 SNIP 1.565
Web of Science (2014): Impact factor 3.358
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.96 SJR 1.319 SNIP 1.63
Web of Science (2013): Impact factor 3.276
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.72 SJR 1.359 SNIP 1.617
Web of Science (2012): Impact factor 2.795
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.34 SJR 1.96 SNIP 1.839
Web of Science (2011): Impact factor 2.978
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2