Canonical analysis of sentinel-1 radar and sentinel-2 optical data - DTU Orbit (17/02/2019)

Canonical analysis of sentinel-1 radar and sentinel-2 optical data

This paper gives results from joint analyses of dual polarmetry synthetic aperture radar data from the Sentinel-1 mission and optical data from the Sentinel-2 mission. The analyses are carried out by means of traditional canonical correlation analysis (CCA) and canonical information analysis (CIA). Where CCA is based on maximising correlation between linear combinations of the two data sets, CIA maximises mutual information between the two. CIA is a conceptually more pleasing method for the analysis of data with very different modalities such as radar and optical data. Although a little inconclusive as far as the change detection aspect is concerned, results show that CIA analysis gives conspicuously less noisy appearing images of canonical variates (CVs) than CCA. Also, the 2D histogram of the mutual information based leading CVs clearly reveals much more structure than the correlation based one. This gives promise for potentially better change detection results with CIA than can be obtained by means of CCA.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Contributors: Nielsen, A. A., Larsen, R.
Pages: 147-158
Publication date: 2017

Host publication information

Title of host publication: Image Analysis
Volume: 10270
Publisher: IEEE
ISBN (Print): 9783319591285
(Lecture Notes in Computer Science, Vol. 10270).
Keywords: Theoretical Computer Science, Computer Science (all), Canonical correlation analysis, Canonical information analysis, Correlation methods, Information analysis, Radar, Synthetic aperture radar, 2-D histograms, Analysis of data, Canonical analysis, Change detection, Joint analysis, Linear combinations, Mutual informations, Image analysis

Electronic versions:
SCIA2017.pdf
DOIs:
10.1007/978-3-319-59129-2_13
Source: Findit
Source-ID: 2371747216

Research output: Research - peer-review > Article in proceedings – Annual report year: 2017