Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories - DTU Orbit (04/05/2019)

Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories
Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, for the majority of these methods' implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables in silico design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knock-out, knock-in, over-expression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated website including documentation, examples, and installation instructions can be found at http://cameo.bio. Users can also give cameo a try at http://try.cameo.bio.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Global Econometric Modeling, Department of Biotechnology and Biomedicine, iLoop, Department of Chemical and Biochemical Engineering, Synthetic Biology Tools for Yeast, Research Groups
Pages: 1163-1166
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: A C S Synthetic Biology
Volume: 7
Issue number: 4
ISSN (Print): 2161-5063
Ratings:
Web of Science (2018): Indexed yes
Original language: English
Keywords: Metabolic engineering, Genome-scale metabolic models, Heterologous pathway predictions, Computer-aided design, Software, Python
Electronic versions:
acsynbio.7b00423.pdf
DOIs: 10.1021/acssynbio.7b00423

Bibliographical note
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review