Business model innovation for circular economy and sustainability: A review of approaches
- DTU Orbit (13/01/2019)

As circular economy and sustainability gain greater attention of governments, industry and academia, business model innovation for circularity and/or sustainability is becoming fundamental to sustain companies’ competitive advantage. A variety of business model innovation approaches have been proposed to suit circular economy or sustainability principles. Although they largely have been addressed independently as two separate knowledge areas, there is an opportunity to seize synergies from the intersection of both streams. This paper provides a review of approaches for business model innovation for circular economy and/or sustainability, based on a systematic review of academic literature and practitioner-based methodologies. The systematic literature review identified 94 publications and 92 approaches (including conceptual models, methods or tools). The different approaches were categorized according to the business model innovation process, following a three stage ‘dynamic capability’ view. Subsequently they were compared based on five characteristics (nature of data, boundaries of analysis, level of abstraction, time-based view, and representation style), to allow for a better understanding of how to use the approaches in research and practice. Based on the review, key findings outlining trends and a reflection about the interface of the scopes of circular economy-oriented and sustainability-oriented business model innovation are presented. Moreover, a number of gaps are identified and a framework outlined that maps a future research agenda to simultaneously advance both streams.

General information
State: Accepted/In press
Organisations: Engineering Design and Product Development, Department of Mechanical Engineering
Contributors: Pieroni, M. P., McAloone, T., Pigosso, D. A. C.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Cleaner Production
ISSN (Print): 0959-6526
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.79 SJR 1.467 SNIP 2.194
Web of Science (2017): Impact factor 5.651
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.83 SJR 1.659 SNIP 2.502
Web of Science (2016): Impact factor 5.715
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.57 SJR 1.635 SNIP 2.375
Web of Science (2015): Impact factor 4.959
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.6 SJR 1.665 SNIP 2.481
Web of Science (2014): Impact factor 3.844
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.47 SJR 1.618 SNIP 2.527
Web of Science (2013): Impact factor 3.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.07 SJR 1.672 SNIP 2.296
Web of Science (2012): Impact factor 3.398
ISI indexed (2012): ISI indexed yes