Building energy demand aggregation and simulation tools - DTU Orbit (07/01/2019)

Building energy demand aggregation and simulation tools: a Danish case study

Nowadays, the minimization of energy consumption and the optimization of efficiency of the overall energy grid have been in the agenda of most national and international energy policies. At the same time, urbanization has put cities under the microscope towards achieving cost-effective energy savings due to their compact and highly dense form. Thus, accurate estimation of energy demand of cities is of high importance to policy-makers and energy planners. This calls for automated methods that can be easily expandable to higher levels of aggregation, ranging from clusters of buildings to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances.

In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool, which is based on monthly quasi-steady state calculations, using a visual parametric programming language (Grasshopper) coupled with a 3D design interface (Rhinoceros). The estimated heat demand of the examined houses from both simulation tools is compared to actual measured data of heat consumption. An assessment of the two different types of tools follows, which will indicate the suitability of each tool depending on the desired accuracy of results and on the purpose of analysis.

General information

State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Section for Building Energy, Centre for IT-Intelligent Energy Systems in Cities
Contributors: Gianniou, P., Heller, A., Rode, C.
Number of pages: 6
Publication date: 2015

Host publication information

Title of host publication: Proceedings of CISBAT 2015
Keywords: Building energy, Heat demand, Archetypes, Energy Simulation Tools
Electronic versions:
Gianniou_et_al_CISBAT_2015.pdf
Source: PublicationPreSubmission
Source-ID: 116836597
Research output: Research - peer-review : Article in proceedings – Annual report year: 2015