Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo\textsubscript{3}S\textsubscript{13}]2- clusters - DTU Orbit (16/01/2019)

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo\textsubscript{3}S\textsubscript{13}]2- clusters

Identifying and understanding the active sites responsible for reaction turnover is critical to developing improved catalysts. For the hydrogen-evolution reaction (HER), MoS\textsubscript{2} has been identified as an active non-noble-metal-based catalyst. However, only edge sites turnover the reaction because the basal planes are catalytically inert. In an effort to develop a scalable HER catalyst with an increased number of active sites, herein we report a Mo-S catalyst (supported thiomolybdate [Mo\textsubscript{3}S\textsubscript{13}]2- nanoclusters) in which most sulfur atoms in the structure exhibit a structural motif similar to that observed at MoS\textsubscript{2} edges. Supported sub-monolayers of [Mo\textsubscript{3}S\textsubscript{13}]2- nanoclusters exhibited excellent HER activity and stability in acid. Imaging at the atomic scale with scanning tunnelling microscopy allowed for direct characterization of these supported catalysts. The [Mo\textsubscript{3}S\textsubscript{13}]2- nanoclusters reported herein demonstrated excellent turnover frequencies, higher than those observed for other non-precious metal catalysts synthesized by a scalable route.

General information
State: Published
Organisations: Stanford University, Aarhus University
Contributors: Kibsgaard, J., Jaramillo, T. F., Besenbacher, F.
Number of pages: 6
Pages: 248-253
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Nature Chemistry
Volume: 6
Issue number: 3
ISSN (Print): 1755-4330
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 15.28 SJR 13.235 SNIP 4.949
Web of Science (2017): Impact factor 26.201
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 14.61 SJR 12.648 SNIP 4.82
Web of Science (2016): Impact factor 25.87
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 15.17 SJR 11.144 SNIP 4.608
Web of Science (2015): Impact factor 27.893
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 13.67 SJR 10.562 SNIP 4.463
Web of Science (2014): Impact factor 25.325
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 12.35 SJR 8.691 SNIP 3.68
Web of Science (2013): Impact factor 23.297
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 11.09 SJR 9.163 SNIP 3.604
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 9.74 SJR 7.548 SNIP 3.489
Web of Science (2011): Impact factor 20.524