Brillouin optical correlation domain analysis in composite material beams - DTU Orbit (04/12/2018)

Brillouin optical correlation domain analysis in composite material beams

Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

General information

State: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology, Bar-Ilan University, Doron Shalev Engineering Ltd., Xenom Ltd
Number of pages: 14
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Sensors
Volume: 17
Issue number: 10
Article number: 2266
ISSN (Print): 1424-8220
Ratings:
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 3.23 SJR 0.584 SNIP 1.55
 - Web of Science (2017): Impact factor 2.475
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 2.78 SJR 0.623 SNIP 1.614
 - Web of Science (2016): Impact factor 2.677
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 2.21 SJR 0.647 SNIP 1.643
 - Web of Science (2015): Impact factor 2.033
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 2.4 SJR 0.707 SNIP 1.796
 - Web of Science (2014): Impact factor 2.245
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 2.72 SJR 0.636 SNIP 1.758
 - Web of Science (2013): Impact factor 2.048
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 2.53 SJR 0.671 SNIP 1.709
 - Web of Science (2012): Impact factor 1.953
 - ISI indexed (2012): ISI indexed yes