Breadth of T cell responses after immunization with adenovirus vectors encoding ancestral antigens or polyvalent papillomavirus antigens

Oncogenic human papillomaviruses (HPVs) are in most cases eliminated by intervention of T cells. As many other pathogens, these oncogenic HPVs belong to an ancient and diverse virus family. Therefore, we found it relevant to investigate the potential and limitations of inducing a broad response - either by inducing cross-reactive T cells or by administering a polyvalent vaccine. To test these strategies, we designed 3 ancestral and 2 circulating sequences based on the two domains of the E1 and E2 proteins of papillomaviruses (PVs) that exhibit the highest degree of conservation in comparison to the other PV proteins. The PV sequences were fused to a T cell adjuvant, the murine invariant chain and encoded in a recombinant adenoviral vector which was administered to naive outbred mice. By measuring T cell responses induced by these different vaccines and towards peptide pools representing 3 circulating strains and a putative ancestor of oncogenic HPVs, we showed that the ancestral vaccine antigen has to be approximately 90% identical to the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses ensues. Interestingly, the combination of two or three type-specific PV vaccines did not induce a significant decrease of the CD8+ T cell response to the individual targeted PV types. Polyvalent HPV vaccine based on the E1 and E2 proteins seem to be capable of triggering responses towards more than one type of PV while the cross-reactivity of ancestral vaccine seems insufficient in consideration of the sequence diversity between HPV types.
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.06 SJR 0.865 SNIP 0.654
Web of Science (2011): Impact factor 2.23
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.859 SNIP 0.621
Web of Science (2010): Impact factor 1.935
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.973 SNIP 0.659
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.24 SNIP 0.078
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.288 SNIP 0.141
Scopus rating (2006): SJR 0.426 SNIP 0.124
Scopus rating (2005): SJR 1.017 SNIP 0.641
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.858 SNIP 0.6
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.819 SNIP 0.625
Scopus rating (2002): SJR 0.74 SNIP 0.587
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.746 SNIP 0.63
Scopus rating (2000): SJR 0.876 SNIP 0.608
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.846 SNIP 0.651
Original language: English
Electronic versions:
sji12522.pdf_jsessionid_42EE64BE2D238FDF1A7EEFA7A9E00A4D.f04t01.pdf. Embargo ended: 28/02/2018
DOIs:
10.1111/sji.12522
Source: FindIt
Source-ID: 2351358094
Research output: Research - peer-review > Journal article – Annual report year: 2017