Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows - DTU Orbit (16/01/2019)

Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems.

We sampled 10 eelgrass (Zostera marina) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m\(^{-2}\) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g C m\(^{-2}\)). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha\(^{-1}\). Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the C-org produced in the Finnish meadows is exported. Our analysis further showed that >40% of the variation in the C-org stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of Z. marina explained >12% and the contribution of Z. marina detritus to the sediment surface C-org pool explained >10% of the variation in the C-org stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha\(^{-1}\), respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime.

General information

State: Published
Organisations: National Institute of Aquatic Resources, Danish Shellfish Centre, Åbo Akademi University, University of Southern Denmark
Contributors: Rohr, M. E., Bostrom, C., Canal-Vergés, P., Holmer, M.
Pages: 6139-6153
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Biogeosciences
Volume: 13
Issue number: 22
ISSN (Print): 1726-4170
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.96 SJR 2.072 SNIP 1.235
Web of Science (2017): Impact factor 3.441
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.25 SJR 2.397 SNIP 1.315
Web of Science (2016): Impact factor 3.851
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.04 SJR 2.444 SNIP 1.326
Web of Science (2015): Impact factor 3.7
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.03 SJR 2.237 SNIP 1.373
Web of Science (2014): Impact factor 3.978
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.21 SJR 2.451 SNIP 1.422
Web of Science (2013): Impact factor 3.753