We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by mask-less reactive ion etching resulting in total, average reflectance below 0.5% across a 156×156 mm² silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional all-black solar 9-cell panels. The black bus-bars (e.g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency.