Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision occurs which causes strong mechanical coupling between the two subsystems. The experimental results show that the operating bandwidth is widened to 14 Hz (14–28 Hz) at an acceleration of 9.81 m/s², and the peak output power can be 0.35 W at a relatively low operation frequency of 16 Hz. Simulation and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to-electricity conversion efficiency by 40–81%.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Silicon Microtechnology, Department of Physics, Experimental Surface and Nanomaterials Physics, Southern University of Science and Technology, Harbin Institute of Technology, Chinese Academy of Sciences
Pages: 547-554
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Sensors and Actuators A: Physical
Volume: 247
ISSN (Print): 0924-4247
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.79 SJR 0.699 SNIP 1.363
Web of Science (2017): Impact factor 2.311
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.79 SJR 0.787 SNIP 1.627
Web of Science (2016): Impact factor 2.499
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.73 SJR 0.826 SNIP 1.553
Web of Science (2015): Impact factor 2.201
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.41 SJR 0.866 SNIP 1.771
Web of Science (2014): Impact factor 1.903
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.53 SJR 0.819 SNIP 1.762
Web of Science (2013): Impact factor 1.943
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.34 SJR 0.91 SNIP 2.113
Web of Science (2012): Impact factor 1.841
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.5 SJR 0.909 SNIP 2.103
Web of Science (2011): Impact factor 1.802
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.11 SNIP 1.85
Web of Science (2010): Impact factor 1.941
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.019 SNIP 1.666
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.977 SNIP 1.616
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.957 SNIP 1.457
Scopus rating (2006): SJR 0.896 SNIP 1.676
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.909 SNIP 1.737
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.945 SNIP 1.746
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.153 SNIP 1.496
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.928 SNIP 1.485
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.958 SNIP 1.472
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.485 SNIP 1.251
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.51 SNIP 0.936
Original language: English
Keywords: Energy harvesting, Piezoelectric, PVDF, Broad bandwidth, Random vibration
Electronic versions:
PVDF_liss_final_2nd_revision.pdf. Embargo ended: 25/07/2018
DOIs:
10.1016/j.sna.2016.06.033
Source: Findit
Source-ID: 2306318263
Research output: Research - peer-review › Journal article – Annual report year: 2016