Biotechnological Trends in Spider and Scorpion Antivenom Development - DTU Orbit
(12/11/2018)

Biotechnological Trends in Spider and Scorpion Antivenom Development

Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Network Engineering of Eukaryotic Cell factories, Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Genomic Epidemiology, Technical University of Denmark
Contributors: Laustsen, A. H., Solà, M., Jappe, E. C., Oscoz Cob, S., Lauridsen, L. P., Engmark, M.
Number of pages: 33
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Toxins
Volume: 8
Issue number: 8
Article number: 226
ISSN (Print): 2072-6651
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.32 SJR 0.955 SNIP 1.136
Web of Science (2017): Impact factor 3.273
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.34 SJR 0.984 SNIP 1.21
Web of Science (2016): Impact factor 3.03
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.76 SJR 0.971 SNIP 1.343
Web of Science (2015): Impact factor 3.571
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 2.85 SJR 0.984 SNIP 1.032
Web of Science (2014): Impact factor 2.938
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.19 SJR 1.053 SNIP 1.193
Web of Science (2013): Impact factor 2.48
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.38 SJR 0.731 SNIP 1.254
Web of Science (2012): Impact factor 2.129
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.94 SJR 0.337 SNIP 0.482
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.171
Original language: English
Keywords: Antivenom, Spider Venoms, Scorpion Venoms, Antibodies, Venomics, Antivenom Design, Venom Neutralization, Antitoxins