Bioremediation perspective of navy blue rx-containing textile effluent by bacterial isolate -
DTU Orbit (10/12/2018)

Bioremediation perspective of navy blue rx-containing textile effluent by bacterial isolate

The aim of the present study was to investigate the textile effluent degrading potential of an isolated bacterium, Proteus sp. SUK7. The strain had the capacity to decolorize Navy Blue Rx-containing textile effluent up to 83% within 96 h. The maximum decolorization was observed under static conditions at pH 7.0 and 30°C. Reduction in the chemical oxygen demand (COD) and biological oxygen demand (BOD) of textile effluent was observed after treatment with Proteus sp. SUK7. Induction in the activities of laccase and aminopyrine N-demethylase was observed after decolorization, which indicates involvement of these enzymes in the decolorization process. The presence of various inducers was also found to have a modulatory effect on enzyme activities and the decolorization process. Biodegradation was confirmed using various analytical techniques, such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). A phytotoxicity study was performed to confirm the nontoxic nature of the degradation metabolites. © 2012 Taylor and Francis Group, LLC.

General information

State: Published
Organisations: Shivaji University
Pages: 185-194
Publication date: 2012
Peer-reviewed: Yes

Publication information

Journal: Bioremediation Journal
Volume: 16
Issue number: 4
ISSN (Print): 1088-9868
Ratings:

- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.25 SJR 0.377 SNIP 0.487
- Web of Science (2017): Impact factor 1.018
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.24 SJR 0.343 SNIP 0.52
- Web of Science (2016): Impact factor 1.098
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 0.91 SJR 0.333 SNIP 0.441
- Web of Science (2015): Impact factor 0.852
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 0.81 SJR 0.318 SNIP 0.368
- Web of Science (2014): Impact factor 0.5
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 0.93 SJR 0.368 SNIP 0.536
- Web of Science (2013): Impact factor 0.714
- ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 0.6 SJR 0.307 SNIP 0.445
- Web of Science (2012): Impact factor 0.395
- ISI indexed (2012): ISI indexed no
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 0.61 SJR 0.373 SNIP 0.41
- Web of Science (2011): Impact factor 0.784
- ISI indexed (2011): ISI indexed no
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 0.354 SNIP 0.308
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.264 SNIP 0.621
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.293 SNIP 0.423
Scopus rating (2007): SJR 0.328 SNIP 0.432
Scopus rating (2006): SJR 0.495 SNIP 0.937
Scopus rating (2005): SJR 0.675 SNIP 1.206
Scopus rating (2004): SJR 0.596 SNIP 0.598
Scopus rating (2003): SJR 0.696 SNIP 0.663
Scopus rating (2002): SJR 0.993 SNIP 1.364
Scopus rating (2001): SJR 0.91 SNIP 0.856
Scopus rating (2000): SJR 0.46 SNIP 0.761
Scopus rating (1999): SJR 0.744 SNIP 2.298
Original language: English
Keywords: Biochemical oxygen demand, Biodegradation, Bioremediation, Detoxification, Fourier transform infrared spectroscopy, Gas chromatography, High performance liquid chromatography, Microbiology, Textiles
DOIs:
10.1080/10889868.2012.731441
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/376618833::37937
Research output: Research - peer-review › Journal article – Annual report year: 2012