Biomethanation of Syngas by Enriched Mixed Anaerobic Consortia in Trickle Bed Reactors
- DTU Orbit (09/04/2019)

Biomethanation of Syngas by Enriched Mixed Anaerobic Consortia in Trickle Bed Reactors
Two identical trickle-bed reactor setups were designed and operated under mesophilic conditions and atmospheric pressure, without pH control, for the biomethanation of syngas consisted of 45% H₂, 25% CO₂, 20% CO and 10% CH₄. The reactors were inoculated with mixed methanogenic microbial consortia formerly adapted to the gaseous mixture. During the start-up of the reactors acetic acid accumulation in the liquid broth resulted in a pH decrease to levels unfavorable for methanogenic activity. This was corrected by introducing a strong phosphate buffer in the medium (K₂HPO₄/KH₂PO₄ : 87 mM/13 mM). Channeling phenomena observed across the trickle bed were eliminated by setting a high liquid recirculation rate (1600 l/lbed/d). The reactors were operated for 294 days presenting minor deviations between them at the 24 extracted steady states and high cell retention even at a hydraulic retention time (HRT) of 3.7 days. At a gas residence time of 2.31 h and a HRT of 5.5 days the achieved CH₄ productivity was 2 mmol/lbed/h with 93% H₂ and 90% CO conversion efficiency and a 78% electron yield to CH₄. The conducted study verified that an enriched methanogenic microbial consortium can effectively convert syngas to CH₄ in a trickle bed reactor under appropriate operational conditions.

General information
Publication status: Accepted/In press
Organisations: Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, CERE – Center for Energy Resources Engineering, PILOT PLANT
Contributors: Asimakopoulos, K., Gavala, H. N., Skiadas, I. V.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Waste and Biomass Valorization
ISSN (Print): 1877-265X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Syngas, Mixed cultures, Trickle bed reactor, Carbon monoxide, Biofuels
DOIs:
10.1007/s12649-019-00649-2
Source: Bibtex
Source-ID: urn:da7f759766ab7ed6b8889478f8943f90
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review