Fly ash deposition on boiler surfaces is a major operational problem encountered in biomass-fired boilers. Understanding deposit formation, and developing modelling tools, will allow improvements in boiler efficiency and availability. In this study, deposit formation of a model biomass ash species (K2Si4O9) on steel tubes, was investigated in a lab-scale Entrained Flow Reactor. K2Si4O9 was injected into the reactor, to form deposits on an air-cooled probe, simulating deposit formation on superheater tubes in boilers. The influence of flue gas temperature (589 – 968°C), probe surface temperature (300 – 550°C), flue gas velocity (0.7 – 3.5m/s), fly ash flux (10,000 – 40,000g/m2h), and probe residence time (up to 60min) was investigated. The results revealed that increasing flue gas temperature and probe surface temperature increased the sticking probability of the fly ash particles, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, the deposit formation rate increased with probe residence time and fly ash flux. Inertial impaction was the primary mechanism of deposit formation, forming deposits only on the upstream side of the steel tube. A mechanistic model was developed for predicting deposit formation in the reactor. Deposit formation by thermophoresis and inertial impaction was incorporated into the model, and the sticking probability of the ash particles was estimated by accounting for energy dissipation due to particle deformation. The model reasonably predicted the influence of flue gas temperature and fly ash flux on the deposit formation rate.
Web of Science (2012): Impact factor 2.374
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.9 SJR 3.114 SNIP 3.055
Web of Science (2011): Impact factor 3.633
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.851 SNIP 2.785
Web of Science (2010): Impact factor 1.797
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.787 SNIP 2.796
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.796 SNIP 2.771
Scopus rating (2007): SJR 2.879 SNIP 2.594
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.718 SNIP 2.164
Scopus rating (2005): SJR 1.548 SNIP 2.218
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.701 SNIP 1.614
Scopus rating (2003): SJR 0.431 SNIP 1.492
Scopus rating (2002): SJR 0.572 SNIP 1.313
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.451 SNIP 1.487
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.135 SNIP 1.771
Scopus rating (1999): SJR 0.544 SNIP 1.334
Original language: English
Keywords: Biomass, Fly ash, Deposit formation, Fouling, Ash sticking probability
DOIs:
10.1016/j.proci.2018.06.039
Source: FindIt
Source-ID: 2435491357
Research output: Research - peer-review ➔ Journal article – Annual report year: 2019