Biological ensemble modeling to evaluate potential futures of living marine resources - DTU Orbit (16/12/2018)

Biological ensemble modeling to evaluate potential futures of living marine resources

Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the "biological ensemble modeling approach," using the Eastern Baltic cod (Gadus morhua callarias) as an example. The core of the approach is to expose an ensemble of models with different ecological assumptions to climate forcing, using multiple realizations of each climate scenario. We simulated the long-term response of cod to future fishing and climate change in seven ecological models ranging from single-species to food web models. These models were analyzed using the "biological ensemble modeling approach" by which we (1) identified a key ecological mechanism explaining the differences in simulated cod responses between models, (2) disentangled the uncertainty caused by differences in ecological model assumptions from the statistical uncertainty of future climate, and (3) identified results common for the whole model ensemble. Species interactions greatly influenced the simulated response of cod to fishing and climate, as well as the degree to which the statistical uncertainty of climate trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator–prey feedbacks. Yet in all models, intense fishing prevented recovery, and climate change further decreased the cod population. Our study demonstrates how the biological ensemble modeling approach makes it possible to evaluate the relative importance of different sources of uncertainty in future species responses, as well as to seek scientific conclusions and sustainable management solutions robust to uncertainty of food web processes in the face of climate change

General information

State: Published
Organisations: National Institute of Aquatic Resources, Section for Marine Ecology and Oceanography, Finnish Game and Fisheries Research Institute, Lund University, Stockholm University, University of Hamburg
Contributors: Gårdmark, A., Lindegren, M., Neuenfeldt, S., Blenckner, T., Heikinheimo, O., Müller-Karulis, B., Niiranen, S., Tomczak, M. T., Aaro, E., Wikström, A., Möllmann, C.
Pages: 742-754
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Ecological Applications
Volume: 23
Issue number: 4
ISSN (Print): 1051-0761
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.64 SJR 2.569 SNIP 1.554
Web of Science (2017): Impact factor 4.393
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.4 SJR 2.376 SNIP 1.575
Web of Science (2016): Impact factor 4.314
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.63 SJR 2.775 SNIP 1.764
Web of Science (2015): Impact factor 4.252
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.59 SJR 2.601 SNIP 1.841
Web of Science (2014): Impact factor 4.093
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.77 SJR 2.686 SNIP 1.85
Web of Science (2013): Impact factor 4.126
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.55 SJR 2.98 SNIP 1.921
Web of Science (2012): Impact factor 3.815
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.86 SJR 3.325 SNIP 1.974
Web of Science (2011): Impact factor 5.102
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.825 SNIP 1.674
Web of Science (2010): Impact factor 4.276
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.706 SNIP 1.766
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.915 SNIP 1.739
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.855 SNIP 1.907
Scopus rating (2006): SJR 3.098 SNIP 2.08
Scopus rating (2005): SJR 2.849 SNIP 1.959
Scopus rating (2004): SJR 2.683 SNIP 1.837
Scopus rating (2003): SJR 2.822 SNIP 2.093
Scopus rating (2002): SJR 3.05 SNIP 2.276
Scopus rating (2001): SJR 3.22 SNIP 2.154
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.672 SNIP 2.417
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.598 SNIP 2.069
Original language: English
DOIs:
10.1890/12-0267.1
URLs:
http://www.esajournals.org/doi/abs/10.1890/12-0267.1
Research output: Research - peer-review › Journal article – Annual report year: 2013