Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

Publication: Research - peer-reviewJournal article – Annual report year: 2011



View graph of relations

The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo3S 4 clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site. © 2011 Macmillan Publishers Limited. All rights reserved.
Original languageEnglish
JournalNature Materials
Issue number6
Pages (from-to)434-438
StatePublished - 2011
CitationsWeb of Science® Times Cited: 363


  • Surface and thin films, Materials for energy
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 5867428