Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2011

View graph of relations

The production of fuels directly or indirectly from sunlight represents one of the major challenges to the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for largescale use. We show that bio-inspired molecular clusters based on molybdenum sulfides and tungsten sulfides mimic nature's enzymes for hydrogen evolution, molybdenum sulfides evolve hydrogen at a slightly higher overpotential than platinum when deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red part of the spectrum is utilized for hydrogen evolution while the blue part is reserved for the more difficult oxygen evolution. The samples have been illuminated with a simulated red part of the solar spectrum i.e. long wavelength (" > 620 nm) part of simulated AM 1.5G radiation. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights into the nature of the active site.
Original languageEnglish
Title of host publicationProceedings of SPIE
EditorsYasuhiro Tachibana
PublisherSPIE - International Society for Optical Engineering
Publication date2011
StatePublished - 2011
EventSolar Hydrogen and Nanotechnology VI - San Diego, California, USA


ConferenceSolar Hydrogen and Nanotechnology VI
CitySan Diego, California, USA
Period01/01/2011 → …
CitationsWeb of Science® Times Cited: 0


  • DFT, Silicon, Photocathode, Cubane-like cluster, Hydrogen evolution
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 5870249