Bioinformatics for cancer immunotherapy target discovery. - DTU Orbit (19/05/2017)

Bioinformatics for cancer immunotherapy target discovery.
The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors.

General information
State: Published
Organisations: Department of Applied Electronics, University of Copenhagen, Dana-Faber Cancer Institute, University Hospital Heidelberg, University of Southern Denmark, Nazarbayev University, University Hospital Herlev
Authors: Olsen, L. R. (Intern), Campos, B. (Ekstern), Barnkob, M. S. (Ekstern), Winther, O. (Intern), Brusic, V. (Ekstern), Andersen, M. H. (Intern)
Pages: 1235-1249
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information
Journal: Cancer Immunology, Immunotherapy
Volume: 63
Issue number: 12
ISSN (Print): 0340-7004
Ratings:
BFI (2017): BFI-level 1
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.066 SNIP 1.007
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.772 SNIP 1.053
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.808 SNIP 0.987
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.618 SNIP 0.975
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.68 SNIP 0.975
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.765 SNIP 0.946
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.467 SNIP 0.993
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.774 SNIP 0.925
Scopus rating (2007): SJR 1.58 SNIP 1.006
Scopus rating (2006): SJR 1.332 SNIP 0.941
Scopus rating (2005): SJR 1.269 SNIP 0.958
Scopus rating (2004): SJR 1.074 SNIP 0.927
Scopus rating (2003): SJR 1.048 SNIP 0.846
Scopus rating (2002): SJR 1.026 SNIP 0.66
Scopus rating (2001): SJR 0.972 SNIP 0.698
Scopus rating (2000): SJR 0.907 SNIP 0.762
Scopus rating (1999): SJR 0.817 SNIP 0.738