Biogenic carbon in combustible waste: Waste composition, variability and measurement uncertainty - DTU Orbit (11/12/2018)

Biogenic carbon in combustible waste: Waste composition, variability and measurement uncertainty

Obtaining accurate data for the contents of biogenic and fossil carbon in thermally-treated waste is essential for determination of the environmental profile of waste technologies. Relations between the variability of waste chemistry and the biogenic and fossil carbon emissions are not well described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating (14C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy balance calculations using the balance method. The ability of the two approaches to accurately describe short-term day-to-day variations in carbon emissions, and to which extent these short-term variations could be explained by controlled changes in waste input composition, was evaluated. Finally, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the 14C method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7–10% (95% confidence interval) for the 14C method and slightly lower for the balance method.

General information
State: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering, FORCE Technology, Vienna University of Technology
Pages: 56-66
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Waste Management and Research
Volume: 31
Issue number: 10_suppl
ISSN (Print): 0734-242X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.78 SJR 0.519 SNIP 0.92
Web of Science (2017): Impact factor 1.631
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.76 SJR 0.673 SNIP 1.091
Web of Science (2016): Impact factor 1.803
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.53 SJR 0.623 SNIP 0.893
Web of Science (2015): Impact factor 1.338
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.28 SJR 0.733 SNIP 1.097
Web of Science (2014): Impact factor 1.297
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.17 SJR 0.58 SNIP 0.925
Web of Science (2013): Impact factor 1.114
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.4 SJR 0.874 SNIP 1.053
Web of Science (2012): Impact factor 1.047
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes