Biogas and its opportunities—A review - DTU Orbit (18/03/2019)

Biogas and its opportunities—A review

Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so called anaerobic digestion, in which different microorganisms, follow diverse metabolic pathways to decompose the organic matter. The process has been known since ancient times and was widely applied at domestic households providing heat and power for hundreds of years. Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives related to the anaerobic digestion process for biogas production. Moreover, a historical retrospective of biogas sector from the early years of its development till its recent advancements gives an outlook of the opportunities that are opening up for process optimisation.

General information
State: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering
Contributors: Kougias, P., Angelidaki, I.
Number of pages: 12
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Frontiers of Environmental Science & Engineering
Volume: 12
Issue number: 3
Article number: 14
ISSN (Print): 2095-2201
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.08 SJR 0.672 SNIP 0.732
Web of Science (2017): Impact factor 1.961
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.84 SJR 0.608 SNIP 0.724
Web of Science (2016): Impact factor 1.716
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.49 SJR 0.552 SNIP 0.636
Web of Science (2015): Impact factor 1.799
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.36 SJR 0.578 SNIP 0.789
Web of Science (2014): Impact factor 1.357
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.419 SNIP 0.807
Web of Science (2013): Impact factor 0.881
Scopus rating (2012): SJR 0.418 SNIP 0.571
Web of Science (2012): Impact factor 0.886
Scopus rating (2011): SJR 0.336 SNIP 0.386
Web of Science (2011): Impact factor 0.754
Scopus rating (2010): SJR 0.311 SNIP 0.282
Scopus rating (2009): SJR 0.172 SNIP 0.211
Scopus rating (2008): SJR 0.122 SNIP 0.164
Original language: English
Keywords: Air Pollution Sources, Industrial Wastes, Gas Fuels, Chemical Products Generally, Agricultural Wastes, Optimization Techniques, Anaerobic digestion, Biogas, Biowastes, Industrial waste, Manure, Solid waste, Fertilizers, Gas emissions, Gas plants, Greenhouse gases, Heating, Industrial wastes, Manures, Optimization, Solid wastes, Anaerobic