Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation - DTU Orbit (10/12/2018)

Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria.

General information
State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Poznan University of Technology, Polish Academy of Sciences, Poznan University Of Life Sciences, Helmholtz Centre for Environmental Research
Pages: 157-164
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Ecotoxicology and Environmental Safety
Volume: 147
ISSN (Print): 0147-6513
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.24 SJR 1.201 SNIP 1.449
Web of Science (2017): Impact factor 3.974
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.99 SJR 1.225 SNIP 1.486
Web of Science (2016): Impact factor 3.743
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.46 SJR 1.197 SNIP 1.402
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.96 SJR 1.11 SNIP 1.404
Web of Science (2014): Impact factor 2.762
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.8 SJR 1.13 SNIP 1.316
Web of Science (2013): Impact factor 2.482
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.6 SJR 1.044 SNIP 1.373
Web of Science (2012): Impact factor 2.203
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.71 SJR 1.141 SNIP 1.214
Web of Science (2011): Impact factor 2.294
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.281 SNIP 1.315
Web of Science (2010): Impact factor 2.34
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.354 SNIP 1.4
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.287 SNIP 1.492
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.228 SNIP 1.45
Scopus rating (2005): SJR 1.059 SNIP 1.226
Scopus rating (2004): SJR 0.753 SNIP 1.017
Scopus rating (2003): SJR 0.689 SNIP 1.005
Scopus rating (2002): SJR 0.881 SNIP 1.102
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.129 SNIP 1.143
Scopus rating (2000): SJR 0.719 SNIP 1.124
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.734 SNIP 1.033
Original language: English
Keywords: Biodegradation, Biodiversity, Illumina NGS, Ionic liquids, Microbial community, Toxicity
DOIs: 10.1016/j.ecoenv.2017.08.026
Source: FindIt
Source-ID: 2373378567
Research output: Research - peer-review • Journal article – Annual report year: 2018