Bioavailability Studies and in vitro Profiling of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor UCPH-102 - DTU Orbit (08/11/2018)

Bioavailability Studies and in vitro Profiling of the Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor UCPH-102

Although the selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor UCPH-101 has become a standard pharmacological tool compound for in vitro and ex vivo studies in the EAAT research field, its inability to penetrate the blood–brain barrier makes it unsuitable for in vivo studies. In the present study, per os (p.o.) administration (40 mg kg⁻¹) of the closely related analogue UCPH-102 in rats yielded respective plasma and brain concentrations of 10.5 and 6.67 μm after 1 h. Three analogue series were designed and synthesized to improve the bioavailability profile of UCPH-102, but none displayed substantially improved properties in this respect. In vitro profiling of UCPH-102 (10 μm) at 51 central nervous system targets in radioligand binding assays strongly suggests that the compound is completely selective for EAAT1. Finally, in a rodent locomotor model, p.o. administration of UCPH-102 (20 mg kg⁻¹) did not induce acute effects or any visible changes in behavior.

General information
State: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, H. Lundbeck A/S, University of Copenhagen, University of Eastern Finland

Number of pages: 17
Pages: 403-419
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: ChemMedChem
Volume: 11
Issue number: 4
ISSN (Print): 1860-7179
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.91 SJR 1.137 SNIP 0.805
Web of Science (2017): Impact factor 3.009
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.11 SJR 1.156 SNIP 0.904
Web of Science (2016): Impact factor 3.225
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3 SJR 1.151 SNIP 0.902
Web of Science (2015): Impact factor 2.98
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.83 SJR 1.11 SNIP 0.902
Web of Science (2014): Impact factor 2.968
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.93 SJR 1.147 SNIP 0.841
Web of Science (2013): Impact factor 3.046
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.87 SJR 1.142 SNIP 0.82
Web of Science (2012): Impact factor 2.835
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1