Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars

Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars

Bioaccessibility data of PAHs from biochar produced under real world conditions is scarce and the influence of feedstock and various post-pyrolysis treatments common in agriculture, such as co-composting or lacto-fermentation to produce silage fodder, on their bioavailability and bioaccessibility has hardly been studied. The total (C_{total}), and freely dissolved (i.e., bioavailable) concentrations (C_{free}) of the sum of 16 US EPA PAHs of 43 biochar samples produced and treated in such ways ranged from 0.4 to almost 2000 mg/kg, and from 12 to 81 ng/L, respectively, which resulted in very high biochar-water partition coefficients ($4.2 \leq \log KD \leq 8.8$ L/kg) for individual PAHs. Thirty three samples were incubated in contaminant traps that combined a diffusive carrier and a sorptive sink. Incubations yielded samples only containing desorption-resistant PAHs (C_{res}). The desorption resistant PAH fraction was dominant, since only eight out of 33 biochar samples showed statistically significant bioaccessible fractions ($f_{\text{bioaccessible}} = 1 - C_{\text{res}}/C_{\text{total}}$). Bioavailability correlated positively with C_{total}/surface area. Other relationships of bioavailability and -accessibility with the investigated post-pyrolysis processes or elemental composition could not be found. PAH exposure was very limited (low C_{free}, high C_{res}) for all samples with low to moderate C_{total}, whereas higher exposure was determined in some biochars with $C_{\text{total}} > 10$ mg/kg.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Chemistry, Agroscope, Aarhus University, Norwegian Geotechnical Institute, Ithaka Institute for Carbon Strategies
Contributors: Hilber, I., Mayer, P., Gouliarmou, V., Hale, S. E., Cornelissen, G., Schmidt, H. P., Bucheli, T. D.
Number of pages: 8
Pages: 700-707
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Chemosphere
Volume: 174
ISSN (Print): 0045-6535
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.62 SJR 1.435 SNIP 1.448
Web of Science (2017): Impact factor 4.427
Web of Science (2017): Indexed yes
Original language: English
Keywords: Agricultural practice, Biochar as feed additive, Biochar mixtures, Organic pollutants, Post-processing
DOIs:
10.1016/j.chemosphere.2017.02.014
Source: FindIt
Source-ID: 2352263060
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review