Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea - DTU Orbit (07/01/2019)

Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea

Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.

General information
- State: Published
- Organisations: University of Granada
- Number of pages: 7
- Pages: 1261-1267
- Publication date: 2015
- Peer-reviewed: Yes

Publication information
- Journal: Food & Function
- Volume: 6
- Issue number: 4
- ISSN (Print): 2042-6496
- Ratings:
 - Web of Science (2019): Indexed yes
 - Web of Science (2018): Indexed yes
 - Scopus rating (2017): CiteScore 3.62 SJR 1.209 SNIP 1.07
 - Web of Science (2017): Impact factor 3.289
 - Web of Science (2017): Indexed yes
 - Scopus rating (2016): CiteScore 3.38 SJR 1.131 SNIP 1.024
 - Scopus rating (2015): CiteScore 3.15 SJR 1.013 SNIP 0.999
 - Web of Science (2015): Indexed yes
 - Scopus rating (2014): CiteScore 3.04 SJR 1.022 SNIP 1.072
 - Web of Science (2014): Impact factor 2.791
 - Scopus rating (2013): CiteScore 3.29 SJR 1.128 SNIP 1.054
 - Web of Science (2013): Impact factor 2.907
 - ISI indexed (2013): ISI indexed yes
 - Scopus rating (2012): CiteScore 2.79 SJR 0.979 SNIP 1.103
 - Web of Science (2012): Impact factor 2.694
 - ISI indexed (2012): ISI indexed no
 - Scopus rating (2011): CiteScore 1.14 SJR 0.353 SNIP 0.378
 - Web of Science (2011): Impact factor 1.179
 - ISI indexed (2011): ISI indexed no
- Original language: English
- Keywords: Food Science, Amino acids, Body fluids, Cholesterol, Fish, Hydrolysis, Bile acid bindings, Cholesterol levels, Cholesterol lowering, Enzymatic treatments, Fish protein hydrolysate, Hypocholesterolemic effect, Statistically significant difference, West mediterraneans, Proteins, Equidae, Micromesistius poutassou, Pagellus acarne, Scyliorhinus canicula, BIOCHEMISTRY, FOOD
- DOIs: 10.1039/c4fo01171f
- Source: FindIt
- Source-ID: 2263915300