Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea - DTU Orbit (24/12/2018)

Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea

Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypcholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.

General information
State: Published
Organisations: University of Granada
Number of pages: 7
Pages: 1261-1267
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Food & Function
Volume: 6
Issue number: 4
ISSN (Print): 2042-6496
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 3.62 SJR 1.209 SNIP 1.07
Web of Science (2017): Impact factor 3.289
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.38 SJR 1.131 SNIP 1.024
Web of Science (2016): Impact factor 3.247
Scopus rating (2015): CiteScore 3.15 SJR 1.013 SNIP 0.999
Web of Science (2015): Impact factor 2.686
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.04 SJR 1.022 SNIP 1.072
Web of Science (2014): Impact factor 2.791
Scopus rating (2013): CiteScore 3.29 SJR 1.128 SNIP 1.054
Web of Science (2013): Impact factor 2.907
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.79 SJR 0.979 SNIP 1.103
Web of Science (2012): Impact factor 2.694
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.14 SJR 0.353 SNIP 0.378
Web of Science (2011): Impact factor 1.179
ISI indexed (2011): ISI indexed no
Original language: English
Keywords: Food Science, Amino acids, Body fluids, Cholesterol, Fish, Hydrolysis, Bile acid bindings, Cholesterol levels, Cholesterol lowering, Enzymatic treatments, Fish protein hydrolysate, Hypocholesterolemic effect, Statistically significant difference, West mediterraneans, Proteins, Equidae, Micromesistius poutassou, Pagellus acarne, Scyliorhinus canicula, BIOCHEMISTRY, FOOD
DOIs:
10.1039/c4fo01171f
Source: FindIt
Source-ID: 2263915300
Research output: Research - peer-review › Journal article – Annual report year: 2015