Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances

Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances
We investigate the influence of excitonic localization on the corresponding biexcitonic states in GaAs quantum wells by spectrally resolved four-wave mixing. With increasing localization, the biexciton binding energy increases, while the biexciton continuum shifts to higher energies. The localization leads to an inhomogeneous broadening of the biexciton binding energy and the biexciton continuum edge. Simultaneously, the oscillator strength of the biexciton continuum-edge is reduced. This is interpreted as a result of the different localization of biexcitonic and excitonic states by the random disorder potential.

General information
State: Published
Organisations: Optoelectronics, Department of Photonics Engineering
Contributors: Langbein, W., Hvam, J. M.
Pages: 167-174
Publication date: 2002
Peer-reviewed: Yes

Publication information
Journal: Physica Status Solidi A
Volume: 190
Issue number: 1
ISSN (Print): 0031-8965
Ratings:
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Web of Science (2005): Indexed yes
Web of Science (2004): Indexed yes
Web of Science (2002): Indexed yes
Original language: English
Source: orbit
Source-ID: 37342
Research output: Research - peer-review › Journal article – Annual report year: 2002