Bézier curves that are close to elastica

Publication: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

We study the problem of identifying those cubic B´ezier curves that are close in the L2 norm to planar elastic curves. The problem arises in design situations where the manufacturing process produces elastic curves; these are difficult to work with in a digital environment. We seek a sub-class of special B´ezier curves as a proxy. We identify an easily computable quantity, which we call the λ-residual eλ, that accurately predicts a small L2 distance. We then identify geometric criteria on the control polygon that guarantee that a B´ezier curve has λ-residual below 0.4, which effectivelyimpliesthatthecurveiswithin1%ofitsarc-lengthtoanelasticcurveinthe L2 norm. Finally wegive two projection algorithms that take an input B´ezier curve and adjust its length and shape, whilst keeping the end-points and end-tangent angles fixed, until it is close to an elastic curve
Original languageEnglish
JournalComputer-Aided Design
Volume104
Pages (from-to)36-44
Number of pages9
ISSN0010-4485
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0

    Keywords

  • Cubic Bézier curves, Elastic curves, Splines, Approximation, Computer aided design, Physically-based modeling
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 148461888