Benchmarking healthcare logistics processes: a comparative case study of Danish and US hospitals

Logistics processes in hospitals are vital in the provision of patient care. Improving healthcare logistics processes provides an opportunity for reduced healthcare costs and better support of clinical processes. Hospitals are faced with increasing healthcare costs around the world and improvement initiatives prevalent in manufacturing industries such as lean, business process reengineering and benchmarking have seen an increase in use in healthcare. This study investigates how logistics processes in a hospital can be benchmarked to improve process performance. A comparative case study of the bed logistics process and the pharmaceutical distribution process was conducted at a Danish and a US hospital. The case study results identified decision criteria for designing efficient and effective healthcare logistics processes. The most important decision criteria were related to quality, security of supply and employee engagement. Based on these decision criteria, performance indicators were developed to enable benchmarking of logistics processes in healthcare. The study contributes to the limited literature on healthcare logistics benchmarking. Furthermore, managers in healthcare logistics are provided with a list of decision parameters relevant for designing and benchmarking processes.

General information
State: Published
Organisations: Department of Management Engineering, Management Science, Operations Management, Transport DTU, Norwegian University of Science and Technology
Contributors: Feibert, D. C., Andersen, B., Jacobsen, P.
Number of pages: 27
Pages: 108-134
Publication date: 2019
Peer-reviewed: Yes

Publication information
Volume: 30
Issue number: 1-2
ISSN (Print): 1478-3363
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.6 SJR 0.634 SNIP 1.186
Web of Science (2017): Impact factor 1.526
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.59 SJR 0.676 SNIP 1.292
Web of Science (2016): Impact factor 1.368
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.71 SJR 0.68 SNIP 1.278
Web of Science (2015): Impact factor 0.896
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.91 SJR 0.586 SNIP 1.241
Web of Science (2014): Impact factor 1.323
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.81 SJR 0.598 SNIP 1.441
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.27 SJR 0.599 SNIP 1.013
Web of Science (2012): Impact factor 0.894
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1