Benchmarking five computational methods for analyzing large photonic crystal membrane cavities - DTU Orbit (12/11/2018)

Benchmarking five computational methods for analyzing large photonic crystal membrane cavities
We benchmark five state-of-the-art computational methods by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. The convergence of the methods with respect to resolution, degrees of freedom and number of modes is investigated. Convergence is not obtained for some of the methods, indicating that some are more suitable than others for analyzing line defect cavities.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices, Plasmonics and Metamaterials, Department of Mechanical Engineering, Solid Mechanics, Department of Electrical Engineering, Electromagnetic Systems, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO), Zuse Institute Berlin
Pages: 89-90
Publication date: 2017

Host publication information
Title of host publication: Proceedings of the 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
Publisher: IEEE
ISBN (Electronic): 978-1-5090-5323-0
Keywords: Photonic crystal, Microcavity, Line defect cavity, Quality factor, Numerical simulations
DOIs:
10.1109/NUSOD.2017.8010005
Research output: Research - peer-review › Article in proceedings – Annual report year: 2017