Bell-shaped size selection in a bottom trawl: A case study for Nephrops directed fishery with reduced catches of cod

Monotonous size selection curves have traditionally been sufficient to describe the size selection in the aft end of a bottom trawl. Such modelling is a good approximation when the size selective system consists of a single selective device. However, in some fisheries the demands for species and size selectivity have motivated the development of selective systems in trawl fisheries that utilize more than one selective device simultaneously. An example can be found in the Swedish demersal trawl fishery targeting Norway lobster (Nephrops norvegicus), which simultaneously aims at avoiding catches of Atlantic cod (Gadhus morhua). In this fishery, the selective system consists of a Nordmøre type sorting grid followed by a size selective square mesh codend. The size selection curve for this system has a characteristic bell-shaped curvature, which cannot be sufficiently described by a monotonous selection curve. An approach that can handle a bell shaped curvature is to use a more flexible empirical size selection model. However, such models primarily use a curve fitting procedure, and do not allow the possibility to investigate the contribution of the individual parts of the selection system. Therefore, we choose to use a structural based model that directly models the contributions of the individual selectivity devices to the overall performance of the system. We demonstrate that this approach can appropriately describe the experimental size selection data for both Nephrops and cod in a system composed of a sorting grid followed by a size selective codend. Furthermore, this approach provides a direct quantification of the selective processes of the individual parts of the system to the overall size selection in the fishing gear. In addition, we demonstrate how this approach can provide fisheries managers with a new tool when trying to develop more sustainable fisheries through improving fishing gear size and species selectivity.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Ecosystem based Marine Management, Swedish University of Agricultural Sciences, SINTEF
Contributors: Lövgren, J., Herrmann, B., Feekings, J. P.
Pages: 26-35
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Fisheries Research
Volume: 184
ISSN (Print): 0165-7836
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.94 SJR 0.941 SNIP 0.959
Web of Science (2017): Impact factor 1.874
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.21 SJR 1.183 SNIP 1.153
Web of Science (2016): Impact factor 2.185
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.01 SJR 1.092 SNIP 1.131
Web of Science (2015): Impact factor 2.23
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.17 SJR 1.122 SNIP 1.305
Web of Science (2014): Impact factor 1.903
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.85 SJR 1.049 SNIP 1.167
Web of Science (2013): Impact factor 1.843
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.78 SJR 0.948 SNIP 1.189
Web of Science (2012): Impact factor 1.695
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.7 SJR 1.622 SNIP 1.142
Web of Science (2011): Impact factor 1.586
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.063 SNIP 1.107
Web of Science (2010): Impact factor 1.656
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.994 SNIP 1.068
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.946 SNIP 1.136
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.031 SNIP 1.079
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.028 SNIP 1.274
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.924 SNIP 1.139
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.964 SNIP 1.032
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.078 SNIP 1.29
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.19 SNIP 1.246
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.933 SNIP 0.902
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.541 SNIP 0.816
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.565 SNIP 0.838
Original language: English
DOIs:
10.1016/j.fishres.2016.03.019
Research output: Research - peer-review › Journal article – Annual report year: 2016