Bedmap2: improved ice bed, surface and thickness datasets for Antarctica - DTU Orbit
(08/12/2018)

Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved coverage of data has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.

General information

State: Published
Organisations: National Space Institute, Geodynamics

Pages: 375-393
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Cryosphere
Volume: 7
ISSN (Print): 1994-0416

Ratings:

BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.84 SJR 3.034 SNIP 1.425
Web of Science (2017): Impact factor 4.524
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.49 SJR 3.696 SNIP 1.825
Web of Science (2016): Impact factor 4.803
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.35 SJR 4.118 SNIP 1.663
Web of Science (2015): Impact factor 4.906
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.39 SJR 3.976 SNIP 1.727
Web of Science (2014): Impact factor 5.516
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.36 SJR 3.249 SNIP 1.449
Web of Science (2013): Impact factor 4.374
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes