Beamstop-based low-background ptychography to image weakly scattering objects - DTU Orbit (18/12/2018)

Beamstop-based low-background ptychography to image weakly scattering objects

In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns.

General information

- **State:** Published
- **Organisations:** Department of Physics, Center for Electron Nanoscopy, Experimental Surface and Nanomaterials Physics, Department of Chemical and Biochemical Engineering, Deutsches Elektronensynchrotron DESY, Technische Universität Dresden, Karlsruhe Institute of Technology
- **Contributors:** Reinhardt, J., Hoppe, R., Hofmann, G., Damsgaard, C. D., Patommel, J., Baumbach, C., Baier, S., Rochet, A., Grunwaldt, J., Falkenberg, G., Schroer, C. G.
- **Number of pages:** 6
- **Pages:** 52-57
- **Publication date:** 2017
- **Peer-reviewed:** Yes

Publication information

- **Journal:** Ultramicroscopy
- **Volume:** 173
- **ISSN (Print):** 0304-3991
- **Ratings:**
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 3.06 SJR 1.824 SNIP 1.317
 - Web of Science (2017): Impact factor 2.929
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 2.82 SJR 1.896 SNIP 1.176
 - Web of Science (2016): Impact factor 2.843
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 2.78 SJR 2.066 SNIP 1.326
 - Web of Science (2015): Impact factor 2.874
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 2.59 SJR 1.628 SNIP 1.598
 - Web of Science (2014): Impact factor 2.436
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 2.66 SJR 1.761 SNIP 1.323
 - Web of Science (2013): Impact factor 2.745
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 2.31 SJR 1.866 SNIP 1.562
 - Web of Science (2012): Impact factor 2.47
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
<table>
<thead>
<tr>
<th>Year</th>
<th>BFI</th>
<th>Scopus Rating</th>
<th>Web of Science</th>
<th>ISI Indexed</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1</td>
<td>2.35 SJR 1.659 SNIP 1.328</td>
<td>2.471</td>
<td>yes</td>
<td>FindIt</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>1.722 SJR 1.239 SNIP 1.544</td>
<td>2.063</td>
<td>yes</td>
<td>FindIt</td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
<td>1.755 SJR 1.239 SNIP 1.544</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>1.583 SJR 1.716 SNIP 1.737</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
</tr>
<tr>
<td>2007</td>
<td>1.372 SJR 1.028 SNIP 1.693</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1.724 SJR 1.693 SNIP 1.693</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1.496 SJR 1.472 SNIP 1.472</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1.482 SJR 1.69 SNIP 1.69</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1.365 SJR 1.737 SNIP 1.737</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1.04 SJR 1.297 SNIP 1.297</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1.52 SNIP 1.195</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.351 SNIP 1.058</td>
<td>yes</td>
<td>yes</td>
<td>FindIt</td>
<td></td>
</tr>
</tbody>
</table>

Original language: English
Keywords: Background scattering, Beamstop, High resolution, Nanoparticles, Ptychography, Signal-to-noise

DOI: 10.1016/j.ultramic.2016.11.005