Beamforming with a circular microphone array for localization of environmental noise sources - DTU Orbit (03/12/2018)

Beamforming with a circular microphone array for localization of environmental noise sources
It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360. The microphones can be suspended in free space or they can be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics. The performance of the two signal processing techniques is examined using computer simulations, and the results are validated experimentally.

General information
State: Published
Organisations: Acoustic Technology, Department of Electrical Engineering
Contributors: Tiana Roig, E., Jacobsen, F., Fernandez Grande, E.
Pages: 3535-3542
Publication date: 2010
Peer-reviewed: Yes

Publication information
Volume: 128
Issue number: 6
ISSN (Print): 0001-4966
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.224
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.83 SJR 0.819 SNIP 1.271
Web of Science (2016): Impact factor 1.547
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.77 SJR 0.854 SNIP 1.416
Web of Science (2015): Impact factor 1.572
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.8 SJR 0.887 SNIP 1.402
Web of Science (2014): Impact factor 1.503
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.707 SNIP 1.937
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.75 SJR 0.771 SNIP 1.619
Web of Science (2012): Impact factor 1.646
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.68 SJR 0.686 SNIP 1.624
Web of Science (2011): Impact factor 1.55
ISI indexed (2011): ISI indexed yes