Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography - DTU Orbit (18/01/2019)

Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography

Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non-Maxwellian fast-ion distribution functions. This has recently been overcome by velocity-space tomography. In this method two-dimensional images of the velocity distribution functions consisting of a few hundreds or thousands of pixels are reconstructed using the available fast-ion measurements. Here we present an overview and current status of this emerging technique at the ASDEX Upgrade tokamak and the JET tokamak based on fast-ion D-alpha spectroscopy, collective Thomson scattering, gamma-ray and neutron emission spectrometry, and neutral particle analyzers. We discuss Tikhonov regularization within the Bayesian framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors.

General information
State: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, University of Milan - Bicocca, Max-Planck-Institut fur Plasmaphysik, Uppsala University, Rutherford Appleton Laboratory, Culham Science Centre, Aalto University, Consiglio Nazionale delle Ricerche
Number of pages: 14
Pages: 23-36
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Fusion Science and Technology
Volume: 74
Issue number: 1-2
ISSN (Print): 1536-1055
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.96 SJR 0.383 SNIP 0.982
Web of Science (2017): Impact factor 0.991
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.57 SJR 0.423 SNIP 0.728
Web of Science (2016): Impact factor 0.578
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.65 SJR 0.411 SNIP 0.759
Web of Science (2015): Impact factor 0.799
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.46 SJR 0.357 SNIP 0.536
Web of Science (2014): Impact factor 0.486
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.56 SJR 0.382 SNIP 0.582
Web of Science (2013): Impact factor 0.591
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.54 SJR 0.448 SNIP 0.704
Web of Science (2012): Impact factor 0.517
ISI indexed (2012): ISI indexed yes