Basics of antibody phage display technology

Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Section for Microbial and Chemical Ecology, Metabolic Signaling and Regulation, Tropical Pharmacology and Biotherapeutics, Network Engineering of Eukaryotic Cell factories, IONTAS Ltd, Technical University of Denmark
Contributors: Ledsgaard, L., Kilstrup, M., Karatt-Vellatt, A., McCafferty, J., Laustsen, A. H.
Number of pages: 15
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Toxins
Volume: 10
Issue number: 6
Article number: 236
ISSN (Print): 2072-6651
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.32 SJR 0.955 SNIP 1.136
Web of Science (2017): Impact factor 3.273
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.34 SJR 0.984 SNIP 1.21
Web of Science (2016): Impact factor 3.03
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.76 SJR 0.971 SNIP 1.343
Web of Science (2015): Impact factor 3.571
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 2.85 SJR 0.984 SNIP 1.032
Web of Science (2014): Impact factor 2.938
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.19 SJR 1.053 SNIP 1.193
Web of Science (2013): Impact factor 2.48
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 2.38 SJR 0.731 SNIP 1.254
Web of Science (2012): Impact factor 2.129
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.94 SJR 0.337 SNIP 0.482
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.171
Original language: English
Keywords: Antibody discovery, Recombinant antivenom, Phage display, M13 phage, Toxinology
Electronic versions: toxins_10_00236.pdf
DOIs: