Band bending and alignment at the spinel/perovskite γ-Al2O3/SrTiO3 heterointerface - DTU Orbit (21/12/2018)

Band bending and alignment at the spinel/perovskite γ-Al2O3/SrTiO3 heterointerface

We present a comprehensive study of the band bending and alignment at the interface of γ-Al2O3/SrTiO3 heterostructures by hard x-ray photoelectron spectroscopy. Our measurements find no signs for a potential gradient within the polar γ-Al2O3 film as predicted by the basic electronic reconstruction scenario. We present evidence for a band bending on the SrTiO3 side of the interface, yielding a roughly 600 meV deep potential trough, which reaches below the chemical potential and has a spatial expansion of 3–5 unit cells. The band offset between the bulk valence bands is determined to be also approximately 600 meV, corresponding to aligned bands at the interface. Finally, the spatial confinement of the interfacial two-dimensional electron system is derived from the chemically shifted Ti3+ photoemission signal in the Ti 2p core level spectra, measured at various photoelectron detection angles. It is found to be in excellent agreement with the spatial depth of the potential trough.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Universität Würzburg, Helmholtz-Zentrum Berlin für Materialien und Energie
Contributors: Schütz, P., Pfaff, F., Scheiderer, P., Chen, Y., Pryds, N., Gorgoi, M., Sing, M., Claessen, R.
Number of pages: 9
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Physical Review B Condensed Matter
Volume: 91
Issue number: 16
Article number: 165118
ISSN (Print): 0163-1829
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774