Axially variable-length solid element of absolute nodal coordinate formulation

Axially variable-length solid element of absolute nodal coordinate formulation

An axially variable-length solid element with eight nodes is proposed by integrating the arbitrary Lagrangian–Eulerian (ALE) formulation and the absolute nodal coordinate formulation (ANCF). In addition to the nodal positions and slopes of eight nodes, two material coordinates in the axial direction are used as the generalized coordinates. As a consequence, the nodes in the ALE–ANCF are not associated with any specific material points and the axial length of the solid element can be varied over time. These two material coordinates give rise to a variable mass matrix and an additional inertial force vector. Computationally efficient formulae of the additional inertial forces and elastic forces, as well as their Jacobians, are also derived. The dynamic equation of a flexible multibody system (FMBS) with variable-length bodies is presented. The maximum and minimum lengths of the boundary elements of an FMBS have to be appropriately defined to ensure accuracy and non-singularity when solving the dynamic equation. Three numerical examples of static and dynamic problems are given to validate the variable-length solid elements of ALE–ANCF and show their capability.

General information

State: Accepted/In press
Organisations: Solid Mechanics, Department of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Beijing Institute of Technology
Contributors: Sun, J., Tian, Q., Hu, H., Pedersen, N. L.
Publication date: 2019
Peer-reviewed: Yes

Publication information

Journal: Acta Mechanica Sinica
ISSN (Print): 0567-7718
Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.67 SJR 0.409 SNIP 0.745
 - Web of Science (2017): Impact factor 1.545
 - Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.36 SJR 0.378 SNIP 0.743
 - Web of Science (2016): Impact factor 1.324
 - BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.04 SJR 0.375 SNIP 0.874
 - Web of Science (2015): Impact factor 0.832
 - Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.09 SJR 0.314 SNIP 0.806
 - Web of Science (2014): Impact factor 0.887
 - Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 0.95 SJR 0.314 SNIP 0.85
 - Web of Science (2013): Impact factor 0.616
 - ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 0.94 SJR 0.361 SNIP 0.869
 - Web of Science (2012): Impact factor 0.688
 - ISI indexed (2012): ISI indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 1 SJR 0.279 SNIP 0.729
 - Web of Science (2011): Impact factor 0.86
 - ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.314 SNIP 0.814
Web of Science (2010): Impact factor 0.749
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.347 SNIP 0.735
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.351 SNIP 1.103
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.211 SNIP 0.823
Scopus rating (2006): SJR 0.284 SNIP 0.6
Scopus rating (2005): SJR 0.349 SNIP 0.567
Scopus rating (2004): SJR 0.451 SNIP 0.884
Scopus rating (2003): SJR 0.268 SNIP 0.605
Scopus rating (2002): SJR 0.211 SNIP 0.474
Scopus rating (2001): SJR 0.267 SNIP 0.18
Scopus rating (2000): SJR 0.155 SNIP 0.366
Scopus rating (1999): SJR 0.153 SNIP 0.142
Original language: English
Keywords: Flexible multibody dynamics, Arbitrary Lagrangian–Eulerian formulation, Absolute nodal coordinate formulation, Variable-length solid element
DOIs:
10.1007/s10409-018-0823-7
Source: FindIt
Source-ID: 2443690128
Research output: Research - peer-review; Journal article – Annual report year: 2019