Documents

DOI

View graph of relations

The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy measures of reconstructed sub-bands from the discrete wavelet transformation (DWT) and the wavelet packet transformation (WPT). Based on the extracted features all data segments were classified using a support vector machine (SVM) algorithm as simulated seizure or normal activity. A case study of the seizure from the patient showed that the simulated seizures were visually similar to the epileptic one. The multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short detection latency and low false detection rate. The results showed superiority of the multi- modal detection system compared to the uni-modal one. The presented system has a promising potential for seizure detection based on multi-modal data.
Original languageEnglish
JournalComputer Methods and Programs in Biomedicine
Publication date2012
Volume107
Issue2
Pages97–110
ISSN0169-2607
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 2

Keywords

  • Support vector machine learning, Movement sensors, Epilepsy, Surface EMG sensors, Wavelet packet, Seizure detection
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5786952