Automatic Generation of Optimized Business Process Models from Constraint-Based Specifications - DTU Orbit (28/02/2019)

Automatic Generation of Optimized Business Process Models from Constraint-Based Specifications

Business process (BP) models are usually defined manually by business analysts through imperative languages considering activity properties, constraints imposed on the relations between the activities as well as different performance objectives. Furthermore, allocating resources is an additional challenge since scheduling may significantly impact BP performance. Therefore, the manual specification of BP models can be very complex and time-consuming, potentially leading to non-optimized models or even errors. To overcome these problems, this work proposes the automatic generation of imperative optimized BP models from declarative specifications. The static part of these declarative specifications (i.e. control-flow and resource constraints) is expected to be useful on a long-term basis. This static part is complemented with information that is less stable and which is potentially unknown until starting the BP execution, i.e. estimates related to (1) number of process instances which are being executed within a particular timeframe, (2) activity durations, and (3) resource availabilities. Unlike conventional proposals, an imperative BP model optimizing a set of instances is created and deployed on a short-term basis. To provide for run-time flexibility the proposed approach additionally allows decisions to be deferred to run-time by using complex late-planning activities, and the imperative BP model to be dynamically adapted during run-time using replanning. To validate the proposed approach, different performance measures for a set of test models of varying complexity are analyzed. The results indicate that, despite the NP-hard complexity of the problems, a satisfactory number of suitable solutions can be produced.

General information
State: Published
Organisations: University of Seville, University of Innsbruck
Number of pages: 58
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: International Journal of Cooperative Information Systems
Volume: 22
Issue number: 2
Article number: 1350009
ISSN (Print): 0218-8430
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.91 SJR 0.256 SNIP 0.574
Web of Science (2017): Impact factor 0.2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.93 SJR 0.324 SNIP 0.888
Web of Science (2016): Impact factor 1
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.93 SJR 0.291 SNIP 0.622
Web of Science (2015): Impact factor 0.526
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.16 SJR 0.43 SNIP 0.768
Web of Science (2014): Impact factor 0.471
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.88 SJR 0.291 SNIP 0.945
Web of Science (2013): Impact factor 0.231
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.84 SJR 0.645 SNIP 1.62
Web of Science (2012): Impact factor 0.526
BFI (2011): BFI-level 1