Attribution mechanisms for ancillary service costs induced by variability in power delivery - DTU Orbit (19/03/2019)

Attribution mechanisms for ancillary service costs induced by variability in power delivery

The increased penetration of renewable energy sources in existing power systems has led to necessary developments in electricity market mechanisms. Most importantly, renewable energy generation is increasingly made accountable for deviations between scheduled and actual energy generation. However, there is no mechanism to enforce accountability for the additional costs induced by power fluctuations. These costs are socialized and eventually supported by electricity customers. We propose some metrics for assessing the contribution of all market participants to power regulation needs, as well as an attribution mechanism for fairly redistributing related power regulation costs. We discuss the effect of various metrics used by the attribution mechanisms, and we illustrate, in a game-theoretical framework, their consequences on the strategic behavior of market participants. We also illustrate, by using the case of Western Denmark, how these mechanisms may affect revenues and the various market participants.

General information

- **State:** Published
- **Organisations:** Department of Electrical Engineering, Center for Electric Power and Energy, Energy Analytics and Markets, Centre for IT-Intelligent Energy Systems in Cities, INRIA, MESCAL, Swiss Federal Institute of Technology Lausanne, Cisco Systems
- **Contributors:** Bona, F., Gast, N., Le Boudec, J., Pinson, P., Tomozei, D.
- **Pages:** 1891 - 1901
- **Publication date:** 2017
- **Peer-reviewed:** Yes

Publication information

- **Journal:** IEEE Transactions on Power Systems
- **Volume:** 32
- **Issue number:** 3
- **ISSN (Print):** 0885-8950
- **Ratings:**
 - BFI (2019): BFI-level 2
 - Web of Science (2019): Indexed yes
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 6.58 SJR 2.742 SNIP 2.662
 - Web of Science (2017): Impact factor 5.255
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 8.17 SJR 3.368 SNIP 3.584
 - Web of Science (2016): Impact factor 5.68
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 6.6 SJR 3.315 SNIP 3.386
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 5.31 SJR 2.475 SNIP 3.485
 - Web of Science (2014): Impact factor 2.814
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 6.33 SJR 2.523 SNIP 4.243
 - Web of Science (2013): Impact factor 3.53
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 5.84 SJR 1.941 SNIP 3.387
 - Web of Science (2012): Impact factor 2.921
 - ISI indexed (2012): ISI indexed yes