Attribution mechanisms for ancillary service costs induced by variability in power delivery - DTU Orbit (22/12/2018)

Attribution mechanisms for ancillary service costs induced by variability in power delivery

The increased penetration of renewable energy sources in existing power systems has led to necessary developments in electricity market mechanisms. Most importantly, renewable energy generation is increasingly made accountable for deviations between scheduled and actual energy generation. However, there is no mechanism to enforce accountability for the additional costs induced by power fluctuations. These costs are socialized and eventually supported by electricity customers. We propose some metrics for assessing the contribution of all market participants to power regulation needs, as well as an attribution mechanism for fairly redistributing related power regulation costs. We discuss the effect of various metrics used by the attribution mechanisms, and we illustrate, in a game-theoretical framework, their consequences on the strategic behavior of market participants. We also illustrate, by using the case of Western Denmark, how these mechanisms may affect revenues and the various market participants.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Energy Analytics and Markets, Centre for IT-Intelligent Energy Systems in Cities, INRIA, MESCAL, Swiss Federal Institute of Technology Lausanne, Cisco Systems
Contributors: Bona, F., Gast, N., Le Boudec, J., Pinson, P., Tomozei, D.
Pages: 1891 - 1901
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Power Systems
Volume: 32
Issue number: 3
ISSN (Print): 0885-8950
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.58 SJR 2.742 SNIP 2.662
Web of Science (2017): Impact factor 5.255
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.17 SJR 3.368 SNIP 3.584
Web of Science (2016): Impact factor 5.68
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.6 SJR 3.315 SNIP 3.386
Web of Science (2015): Impact factor 3.342
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.31 SJR 2.475 SNIP 3.485
Web of Science (2014): Impact factor 2.814
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.33 SJR 2.523 SNIP 4.243
Web of Science (2013): Impact factor 3.53
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.84 SJR 1.941 SNIP 3.387
Web of Science (2012): Impact factor 2.921
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2