Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper - DTU Orbit (16/06/2018)

Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper

Atomic layer deposition of ruthenium is studied as a barrierless metallization solution for future sub-10 nm interconnect technology nodes. We demonstrate the void-free filling in sub-10 nm wide single damascene lines using an ALD process in combination with 2.5 angstrom of ALD TiN interface and postdeposition annealing. At such small dimensions, the ruthenium effective resistance depends less on the scaling than that of Cu/barrier systems. Ruthenium effective resistance potentially crosses the Cu curve at 14 and 10 nm according to the semiempirical interconnect resistance model for advanced technology nodes. These extremely scaled ruthenium lines show excellent electromigration behavior. Time-dependent dielectric breakdown measurements reveal negligible ruthenium ion drift into low-kappa dielectrics up to 200 degrees C, demonstrating that ruthenium can be used as a barrierless metallization in interconnects. These results indicate that ruthenium is highly promising as a replacement to Cu as the metallization solution for future technology nodes.

General Information
State: Published
Organisations: Department of Micro- and Nanotechnology, Silicon Microtechnology, IMEC, Ghent University
Number of pages: 7
Pages: 26119-26125
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication Information
Journal: A C S Applied Materials and Interfaces
Volume: 8
Issue number: 39
ISSN (Print): 1944-8244
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SJR 2.784 SNIP 1.543
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.6 SJR 2.561 SNIP 1.536
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.262 SNIP 1.555 CiteScore 7.38
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.125 SNIP 1.636 CiteScore 6.88
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.992 SNIP 1.548 CiteScore 6.05
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.199 SNIP 1.327 CiteScore 4.94
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.046 SNIP 1.404 CiteScore 4.41
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
TiN interface, Atomic layer deposition (ALD), Beyond-Cu, Reliability, Ruthenium

DOIs:
10.1021/acsami.6b07181
Source: FindIt
Source-ID: 2342856034
Publication: Research - peer-review › Journal article – Annual report year: 2016