Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement - DTU Orbit (01/01/2019)

Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon.

General information

State: Published
Pages: 402-408
Publication date: 2007
Peer-reviewed: Yes

Publication information

Journal: International Journal of Adhesion and Adhesives
Volume: 27
ISSN (Print): 0143-7496
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.4 SJR 0.926 SNIP 1.517
Web of Science (2017): Impact factor 2.065
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.47 SJR 0.919 SNIP 1.492
Web of Science (2016): Impact factor 2.211
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.15 SJR 1.03 SNIP 1.386
Web of Science (2015): Impact factor 1.956
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.27 SJR 1.06 SNIP 1.837
Web of Science (2014): Impact factor 1.773
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.46 SJR 1.233 SNIP 2.163
Web of Science (2013): Impact factor 2.216
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.15 SJR 1.028 SNIP 2.289
Web of Science (2012): Impact factor 1.295
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.5 SJR 1.292 SNIP 2.317
Web of Science (2011): Impact factor 2.17
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.439 SNIP 2.372
Web of Science (2010): Impact factor 1.944
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.89 SNIP 1.942
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.175 SNIP 1.58
Scopus rating (2007): SJR 0.873 SNIP 1.512
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.928 SNIP 1.671
Scopus rating (2005): SJR 0.615 SNIP 1.117
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.71 SNIP 1.172
Scopus rating (2003): SJR 1.227 SNIP 1.116
Scopus rating (2002): SJR 0.623 SNIP 1.235
Scopus rating (2001): SJR 0.581 SNIP 0.886
Scopus rating (2000): SJR 0.375 SNIP 0.807
Scopus rating (1999): SJR 0.41 SNIP 0.794
Original language: English
DOIs:
10.1016/j.ijadhadh.2006.09.011
Source: orbit
Source-ID: 284145
Research output: Research - peer-review › Conference article – Annual report year: 2007