Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review (06/02/2019)

Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion.

General information
State: Published
Organisations: Department of Wind Energy, Composites Mechanics and Materials Mechanics
Contributors: Kusano, Y.
Pages: 755-777
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of Adhesion
Volume: 90
Issue number: 9
ISSN (Print): 0021-8464
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.97 SJR 0.928 SNIP 1.345
Web of Science (2017): Impact factor 1.936
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.24 SJR 0.581 SNIP 1
Web of Science (2016): Impact factor 1.628
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.22 SJR 0.654 SNIP 0.951
Web of Science (2015): Impact factor 1.409
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.47 SJR 0.516 SNIP 0.906
Web of Science (2014): Impact factor 1.417
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.11 SJR 0.547 SNIP 0.886
Web of Science (2013): Impact factor 0.897
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.08 SJR 0.471 SNIP 0.549
Web of Science (2012): Impact factor 0.857
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.18 SJR 0.61 SNIP 0.823
Web of Science (2011): Impact factor 1.31
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.499 SNIP 0.603
Web of Science (2010): Impact factor 1.085
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.376 SNIP 0.652
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.449 SNIP 0.771
Scopus rating (2007): SJR 0.69 SNIP 0.791
Scopus rating (2006): SJR 0.569 SNIP 0.697
Scopus rating (2005): SJR 0.61 SNIP 0.818
Scopus rating (2004): SJR 0.403 SNIP 0.689
Scopus rating (2003): SJR 0.494 SNIP 0.732
Scopus rating (2002): SJR 0.385 SNIP 0.689
Scopus rating (2001): SJR 0.619 SNIP 0.796
Scopus rating (2000): SJR 0.652 SNIP 0.94
Scopus rating (1999): SJR 0.554 SNIP 0.87

Original language: English
Keywords: ENGINEERING, MATERIALS, MECHANICS, DIELECTRIC BARRIER DISCHARGE, FIBER-REINFORCED POLYESTER, DC GLOW-DISCHARGE, SURFACE MODIFICATION, GLIDING ARC, CONTACT-ANGLE, MECHANICAL-PROPERTIES, POLYIMIDE FILM, GAS-DISCHARGE, GLASSY-CARBON, Polymers, Plasma, Substrates and surfaces, Surface treatment by exited gases (e.g., flame, corona, plasma), Adhesion, Plasma applications, Plasma devices, Plasmas, Surface treatment, Adhesion improvement, Atmospheric pressure plasma treatment, Atmospheric pressure plasmas, Characterization techniques, Polymer adhesion, Polymer surfaces

DOIs:
10.1080/00218464.2013.804407
Source: FindIt
Source-ID: 267172695
Research output: Research - peer-review; Journal article – Annual report year: 2014